Advertisements
Advertisements
प्रश्न
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
उत्तर
The slope of the curve is given as \[\frac{dy}{dx} = \tan \theta\]
Here,
\[\frac{dy}{dx} = \tan \theta\]
\[\therefore \frac{dy}{dx} = \tan\left\{ \tan^{- 1} \left( \frac{y}{x} - \cos^2 \frac{y}{x} \right) \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \cos^2 \frac{y}{x}\]
\[\text{ Let }y = vx\]
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[ \therefore v + x\frac{dv}{dx} = v - \cos^2 v\]
\[ \Rightarrow x\frac{dv}{dx} = - \cos^2 v\]
\[ \Rightarrow \sec^2 v dv = - \frac{1}{x}dx\]
Integrating both sides with respect to x, we get
\[\int \sec^2 v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan v = - \log \left| x \right| + C\]
\[ \Rightarrow \tan \frac{y}{x} = - \log \left| x \right| + C\]
\[\text{ Since the curve passes through }\left( 1, \frac{\pi}{4} \right),\text{ it satisfies the above equation . }\]
\[ \therefore \tan \frac{\pi}{4} = - \log \left| 1 \right| + C\]
\[ \Rightarrow C = 1\]
Putting the value of C, we get
\[\tan \frac{y}{x} = - \log \left| x \right| + 1\]
\[ \Rightarrow \tan \frac{y}{x} = - \log \left| x \right| + \log e\]
\[ \Rightarrow \tan \frac{y}{x} = \log\left| \frac{e}{x} \right|\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
(y2 − 2xy) dx = (x2 − 2xy) dy
2xy dx + (x2 + 2y2) dy = 0
3x2 dy = (3xy + y2) dx
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
The solution of `dy/dx + x^2/y^2 = 0` is ______
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve: `("d"y)/("d"x) + 2/xy` = x2
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.