हिंदी

Solve the Following Initial Value Problem:- D Y D X + 2 Y Tan X = Sin X ; Y = 0 When X = π 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]

योग

उत्तर

We have, 
\[\frac{dy}{dx} + 2y \tan x = \sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = 2\tan x\text{ and }Q = \sin x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{2\int\tan x dx} \]
\[ = e^{2\log\left| \sec x \right|} = \sec^2 x\]
\[\text{Multiplying both sides of }(1)\text{ by }I.F. = \sec^2 x, \text{ we get }\]
\[ \sec^2 x \left( \frac{dy}{dx} + 2y \tan x \right) = \sec^2 x \times \sin x\]
\[ \Rightarrow \sec^2 x \left( \frac{dy}{dx} + 2y \tan x \right) = \tan x \sec x\]
Integrating both sides with respect to x, we get
\[y \sec^2 x = \int\tan x \sec x dx + C\]
\[ \Rightarrow y \sec^2 x = \sec x + C . . . . . \left( 2 \right)\]
Now, 
\[y\left( \frac{\pi}{3} \right) = 0\]
\[ \therefore 0 \left( \sec\frac{\pi}{3} \right)^2 = \sec\frac{\pi}{3} + C\]
\[ \Rightarrow C = - 2\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y \sec^2 x = \sec x - 2\]
\[ \Rightarrow y = \cos x - 2 \cos^2 x\]
\[\text{ Hence, }y = \cos x - 2 \cos^2 x\text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 37.09 | पृष्ठ १०७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \log x\]

\[5\frac{dy}{dx} = e^x y^4\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[x\frac{dy}{dx} = x + y\]

Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solve: ydx – xdy = x2ydx.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×