Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
उत्तर
We have,
\[\frac{dy}{dx} - 3y \cot x = \sin 2x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = - 3\cot x\text{ and }Q = \sin 2x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- 3\int\cot x dx} \]
\[ = e^{- 3\log\left| \sin x \right|} = {cosec}^3 x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = {\text{ cosec }}^3 x,\text{ we get }\]
\[ {\text{ cosec }}^3 x\left( \frac{dy}{dx} - 3y \cot x \right) = \sin 2x\left( {\text{ cosec }}^3 x \right)\]
\[ \Rightarrow {\text{ cosec }}^3 x\left( \frac{dy}{dx} - 3y \cot x \right) = 2\cot x\text{ cosec }x\]
Integrating both sides with respect to x, we get
\[y {\text{ cosec }}^3 x = 2\int\cot x\text{ cosec }x dx + C\]
\[ \Rightarrow y {\text{ cosec }}^3 x = - 2\text{ cosec }x + C\]
\[ \Rightarrow y = - 2 \sin^2 x + C \sin^3 x . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 2\]
\[ \therefore 2 = - 2 \sin^2 \frac{\pi}{2} + C \sin^3 \frac{\pi}{2}\]
\[ \Rightarrow C = 4\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y = - 2 \sin^2 x + 4 \sin^3 x\]
\[ \Rightarrow y = 4 \sin^3 x - 2 \sin^2 x\]
\[\text{ Hence, }y = 4 \sin^3 x - 2 \sin^2 x\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
xdx + 2y dx = 0
The solution of `dy/ dx` = 1 is ______
Solve the following differential equation y2dx + (xy + x2) dy = 0
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.