हिंदी

Find the Solution of the Differential Equation Cos Y Dy + Cos X Sin Y Dx = 0 Given that Y = π 2 , When X = π 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 

उत्तर

We have,
\[\cos y dy + \cos x \sin y dx = 0\]
\[ \Rightarrow \cos y dy = - \cos x \sin y dx\]
\[ \Rightarrow \cot y dy = - \cos x dx\]
Integrating both sides, we get
\[\int cot y dy = - \int\cos x dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \sin x + C\]
\[ \Rightarrow \log \left| \sin y \right| + \sin x = C . . . . (1)\]
\[\text{ It is given that at }x = \frac{\pi}{2}, y = \frac{\pi}{2} . \]
\[\text{ Substitutuing the values of x and y in }\left( 1 \right),\text{ we get }\]
\[\log \left| \sin\frac{\pi}{2} \right| + \sin\frac{\pi}{2} = C\]
\[ \Rightarrow C = 1\]
Therefore, substituting the value of C in (1), we get 
\[\log \left| \sin y \right| + \sin x = 1\]
\[\text{ Hence, }\log \left| \sin y \right| + \sin x = 1\text{ is the required solution .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 50 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the differential equation xdx + 2ydy = 0


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×