Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
उत्तर
\[ \frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0 \]
\[\frac{dy}{dx} + y\cot x = 2\cos x . . . . \left( 1 \right) \]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \cot x\text{ and }Q = 2\cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cot x\ dx} \]
\[ = e^{\log{\sin x}} \]
\[ = \sin x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \sin x, \text{ we get }\]
\[\sin x\left( \frac{dy}{dx} + y\cot x \right) = 2\sin x\cos x\]
\[ \Rightarrow \sin x\frac{dy}{dx} + y\cos x = \sin2x\]
Integrating both sides with respect to x, we get
\[y\sin x = \int\sin 2x dx + C\]
\[ \Rightarrow y\sin x = - \frac{\cos2x}{2} + C . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 0 \]
\[ \therefore 0 \times \sin\left( \frac{\pi}{2} \right) = - \frac{cos\pi}{2} + C\]
\[ \Rightarrow C = - \frac{1}{2}\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y\sin x = - \frac{\cos2x}{2} - \frac{1}{2}\]
\[ \Rightarrow 2y\sin x = - \left( 1 + \cos2x \right)\]
\[ \Rightarrow 2y\sin x = - 2 \cos^2 x\]
\[ \Rightarrow y = - \cot x\cos x\]
\[\text{ Hence, }y = - \cot x\cos x\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(x2 − y2) dx − 2xy dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation satisfied by ax2 + by2 = 1 is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
The solution of `dy/dx + x^2/y^2 = 0` is ______
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.