Advertisements
Advertisements
प्रश्न
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
उत्तर
Let the original amount of radium be N and the amount of radium at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = - aP\]
\[ \Rightarrow \frac{dP}{P} = - a dt\]
Integrating both sides, we get
\[ \Rightarrow \log \left| P \right| = - at + C . . . . . \left( 1 \right)\]
Now,
P = N when t = 0
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| N \right| = C\]
\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| P \right| = -\text{ at }+ \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = - \text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[P = \frac{98 . 9}{100}N = 0 . 989N\text{ at }t = 25\]
\[ \therefore \log \left| \frac{0 . 989N}{N} \right| = - 25a\]
\[ \Rightarrow a = - \frac{1}{25}\log \left| 0 . 989 \right|\]
\[\text{ Putting }a = - \frac{1}{25}\log \left| 0 . 989 \right| \text{ in }\left( 2 \right), \text{ we get }\]
\[\log\left| \frac{P}{N} \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t\]
To find the time when the radium becomes half of its quantity, we have
\[N = \frac{1}{2}P\]
\[ \therefore \log \left| \frac{N}{\frac{N}{2}} \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t\]
\[ \Rightarrow \log \left| 2 \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t \]
\[ \Rightarrow t = \frac{25\log 2}{\log 0 . 989} = \frac{25 \times 0 . 6931}{0 . 01106} = 1566 . 68 \approx 1567 \left( \text{ approx . }\right)\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation xdx + 2ydy = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve: ydx – xdy = x2ydx.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
Solve the differential equation
`y (dy)/(dx) + x` = 0