हिंदी

Radium Decomposes at a Rate Proportional to the Quantity of Radium Present. It is Found that in 25 Years, Approximately 1.1% of a Certain Quantity of Radium Has Decomposed. Determine Approximately Ho - Mathematics

Advertisements
Advertisements

प्रश्न

Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?

उत्तर

Let the original amount of radium be N and the amount of radium at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = - aP\]
\[ \Rightarrow \frac{dP}{P} = - a dt\]
Integrating both sides, we get
\[ \Rightarrow \log \left| P \right| = - at + C . . . . . \left( 1 \right)\]
Now, 
P = N when t = 0 
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| N \right| = C\]
\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| P \right| = -\text{ at }+ \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = - \text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[P = \frac{98 . 9}{100}N = 0 . 989N\text{ at }t = 25\]
\[ \therefore \log \left| \frac{0 . 989N}{N} \right| = - 25a\]
\[ \Rightarrow a = - \frac{1}{25}\log \left| 0 . 989 \right|\]
\[\text{ Putting }a = - \frac{1}{25}\log \left| 0 . 989 \right| \text{ in }\left( 2 \right), \text{ we get }\]
\[\log\left| \frac{P}{N} \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t\]
To find the time when the radium becomes half of its quantity, we have
\[N = \frac{1}{2}P\]
\[ \therefore \log \left| \frac{N}{\frac{N}{2}} \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t\]
\[ \Rightarrow \log \left| 2 \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t \]
\[ \Rightarrow t = \frac{25\log 2}{\log 0 . 989} = \frac{25 \times 0 . 6931}{0 . 01106} = 1566 . 68 \approx 1567 \left( \text{ approx . }\right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 28 | पृष्ठ १३५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


The solution of `dy/ dx` = 1 is ______


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the differential equation xdx + 2ydy = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve: ydx – xdy = x2ydx.


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×