Advertisements
Advertisements
प्रश्न
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
उत्तर
Let the original count of bacteria be N and the count of bacteria at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = aP\]
\[ \Rightarrow \frac{dP}{P} = adt\]
\[ \Rightarrow \log \left| P \right| = at + C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| N \right| = C\]
\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right),\text{ we get }\]
\[\log \left| P \right| = \text{ at }+ \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| =\text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[\log \left| \frac{2N}{N} \right| = 6a\]
\[ \Rightarrow a = \frac{1}{6}\log \left| 2 \right|\]
\[\text{ Putting }a = \frac{1}{6}\log \left| 2 \right|\text{ in }\left( 2 \right),\text{ we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{t}{6}\log \left| 2 \right| . . . . . \left( 3 \right)\]
\[\text{ Putting }t = 18 \text{ in }\left( 3 \right)\text{ to find the bacteria after 18 hours, we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{18}{6} \log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = 3\log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = \log \left| 8 \right|\]
\[ \Rightarrow \frac{P}{N} = 8\]
\[ \Rightarrow P = 8N\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(1 + x2) dy = xy dx
(1 − x2) dy + xy dx = xy2 dx
tan y dx + sec2 y tan x dy = 0
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
(x2 − y2) dx − 2xy dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Form the differential equation from the relation x2 + 4y2 = 4b2
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
x2y dx – (x3 + y3) dy = 0
Solve the differential equation `"dy"/"dx" + 2xy` = y
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation
`x + y dy/dx` = x2 + y2