हिंदी

D Y D X + 2 X = E 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} + 2x = e^{3x}\]

उत्तर

We have, 
\[\frac{dy}{dx} + 2x = e^{3x} \]
\[ \Rightarrow \frac{dy}{dx} = e^{3x} - 2x\]
\[ \Rightarrow dy = \left( e^{3x} - 2x \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( e^{3x} - 2x \right)dx\]
\[ \Rightarrow y = \frac{e^{3x}}{3} - 2\frac{x^2}{2} + C\]
\[ \Rightarrow y = \frac{e^{3x}}{3} - x^2 + C\]
\[ \Rightarrow y + x^2 = \frac{e^{3x}}{3} + C\]
\[So, y + x^2 = \frac{e^{3x}}{3} + \text{ C is defined for all }x \in R . \]
\[\text{ Hence,} y + x^2 = \frac{e^{3x}}{3} +\text{ C, where } x \in R,\text{ is the solution to the given differential equation }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 3 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


(y2 − 2xy) dx = (x2 − 2xy) dy


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve

`dy/dx + 2/ x y = x^2`


y2 dx + (xy + x2)dy = 0


Solve the differential equation xdx + 2ydy = 0


The function y = ex is solution  ______ of differential equation


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×