Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} + 2x = e^{3x} \]
\[ \Rightarrow \frac{dy}{dx} = e^{3x} - 2x\]
\[ \Rightarrow dy = \left( e^{3x} - 2x \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( e^{3x} - 2x \right)dx\]
\[ \Rightarrow y = \frac{e^{3x}}{3} - 2\frac{x^2}{2} + C\]
\[ \Rightarrow y = \frac{e^{3x}}{3} - x^2 + C\]
\[ \Rightarrow y + x^2 = \frac{e^{3x}}{3} + C\]
\[So, y + x^2 = \frac{e^{3x}}{3} + \text{ C is defined for all }x \in R . \]
\[\text{ Hence,} y + x^2 = \frac{e^{3x}}{3} +\text{ C, where } x \in R,\text{ is the solution to the given differential equation }.\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
y (1 + ex) dy = (y + 1) ex dx
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
(y2 − 2xy) dx = (x2 − 2xy) dy
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve
`dy/dx + 2/ x y = x^2`
y2 dx + (xy + x2)dy = 0
Solve the differential equation xdx + 2ydy = 0
The function y = ex is solution ______ of differential equation
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
Solve the differential equation
`y (dy)/(dx) + x` = 0