हिंदी

The Volume of a Spherical Balloon Being Inflated Changes at a Constant Rate. If Initially Its Radius is 3 Units and After 3 Seconds It is 6 Units. Find the Radius of the Balloon After T Seconds. - Mathematics

Advertisements
Advertisements

प्रश्न

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.

योग

उत्तर

Let r be the radius and V be the volume of the balloon at any time 't'.
Then, we have,
\[V = \frac{4}{3} \pi r^3 \]
Given :- 
\[\frac{dV}{dt} = - k ...............\left(\text{where }k > 0 \right)\]
\[ \Rightarrow \frac{d}{dt}\left( \frac{4}{3}\pi r^3 \right) = - k\]
\[ \Rightarrow 4 \pi r^2 \frac{dr}{dt} = - k\]
\[ \Rightarrow 4\pi r^2 dr = - k\ dt \]
Integrating both sides, we get
\[\int4\pi r^2 dr = - \int k\ dt \]
\[\frac{4}{3}\pi r^3 = - kt + C ............(1)\]
It is given that at t = 0, r = 3 . 
\[\text{ Substituting }t = 0\text{ and }r = 3\text{ in }(1), \text{ we get }\]
\[C = 36\pi\]
\[\text{ Putting }C = 36\pi\text{ in }(1),\text{ we get }\]
\[\frac{4}{3}\pi r^3 = - kt + 36\pi .............(2)\]
It is also given that at t = 3, r = 6 . 
\[\text{ Putting }t = 3\text{ and }r = 6\text{ in }(1), \text{ we get }\]
\[288 \pi = - 3k + 36\pi\]
\[ \Rightarrow k = - 84\pi\]
\[\text{ Putting }k = - 84 \pi\text{ in }(2),\text{ we get }\]
\[\frac{4}{3}\pi r^3 = 84\pi t + 36 \pi\]
\[ \Rightarrow r^3 = 63 t + 27\]
\[ \Rightarrow r = \left( 63 t + 27 \right)^\frac{1}{3} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 54 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

(y2 + 1) dx − (x2 + 1) dy = 0


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the differential equation:

dr = a r dθ − θ dr


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The function y = ex is solution  ______ of differential equation


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×