मराठी

The Volume of a Spherical Balloon Being Inflated Changes at a Constant Rate. If Initially Its Radius is 3 Units and After 3 Seconds It is 6 Units. Find the Radius of the Balloon After T Seconds. - Mathematics

Advertisements
Advertisements

प्रश्न

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.

बेरीज

उत्तर

Let r be the radius and V be the volume of the balloon at any time 't'.
Then, we have,
\[V = \frac{4}{3} \pi r^3 \]
Given :- 
\[\frac{dV}{dt} = - k ...............\left(\text{where }k > 0 \right)\]
\[ \Rightarrow \frac{d}{dt}\left( \frac{4}{3}\pi r^3 \right) = - k\]
\[ \Rightarrow 4 \pi r^2 \frac{dr}{dt} = - k\]
\[ \Rightarrow 4\pi r^2 dr = - k\ dt \]
Integrating both sides, we get
\[\int4\pi r^2 dr = - \int k\ dt \]
\[\frac{4}{3}\pi r^3 = - kt + C ............(1)\]
It is given that at t = 0, r = 3 . 
\[\text{ Substituting }t = 0\text{ and }r = 3\text{ in }(1), \text{ we get }\]
\[C = 36\pi\]
\[\text{ Putting }C = 36\pi\text{ in }(1),\text{ we get }\]
\[\frac{4}{3}\pi r^3 = - kt + 36\pi .............(2)\]
It is also given that at t = 3, r = 6 . 
\[\text{ Putting }t = 3\text{ and }r = 6\text{ in }(1), \text{ we get }\]
\[288 \pi = - 3k + 36\pi\]
\[ \Rightarrow k = - 84\pi\]
\[\text{ Putting }k = - 84 \pi\text{ in }(2),\text{ we get }\]
\[\frac{4}{3}\pi r^3 = 84\pi t + 36 \pi\]
\[ \Rightarrow r^3 = 63 t + 27\]
\[ \Rightarrow r = \left( 63 t + 27 \right)^\frac{1}{3} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 54 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


\[\frac{dy}{dx} = \log x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


(y2 + 1) dx − (x2 + 1) dy = 0


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


y2 dx + (x2 − xy + y2) dy = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

`dy/dx + 2xy = x`


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve:

(x + y) dy = a2 dx


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×