Advertisements
Advertisements
प्रश्न
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
उत्तर
Let the original amount of radium be N and the amount of radium at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = - aP\]
\[ \Rightarrow \frac{dP}{P} = - a dt\]
Integrating both sides, we get
\[ \Rightarrow \log \left| P \right| = - at + C . . . . . \left( 1 \right)\]
Now,
P = N when t = 0
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| N \right| = C\]
\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| P \right| = -\text{ at }+ \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = - \text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[P = \frac{98 . 9}{100}N = 0 . 989N\text{ at }t = 25\]
\[ \therefore \log \left| \frac{0 . 989N}{N} \right| = - 25a\]
\[ \Rightarrow a = - \frac{1}{25}\log \left| 0 . 989 \right|\]
\[\text{ Putting }a = - \frac{1}{25}\log \left| 0 . 989 \right| \text{ in }\left( 2 \right), \text{ we get }\]
\[\log\left| \frac{P}{N} \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t\]
To find the time when the radium becomes half of its quantity, we have
\[N = \frac{1}{2}P\]
\[ \therefore \log \left| \frac{N}{\frac{N}{2}} \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t\]
\[ \Rightarrow \log \left| 2 \right| = \left( \frac{1}{25}\log \left| 0 . 989 \right| \right)t \]
\[ \Rightarrow t = \frac{25\log 2}{\log 0 . 989} = \frac{25 \times 0 . 6931}{0 . 01106} = 1566 . 68 \approx 1567 \left( \text{ approx . }\right)\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
C' (x) = 2 + 0.15 x ; C(0) = 100
tan y dx + sec2 y tan x dy = 0
(x2 − y2) dx − 2xy dy = 0
(y2 − 2xy) dx = (x2 − 2xy) dy
2xy dx + (x2 + 2y2) dy = 0
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve
`dy/dx + 2/ x y = x^2`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: