मराठी

If xmyn = (x + y)m+n, prove that dydx=yx. - Mathematics

Advertisements
Advertisements

प्रश्न

If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]

बेरीज

उत्तर

Given: xmyn = (x + y)m+n

​Taking log on both the sides, we get

\[\log\left( x^m y^n \right) = \log \left( x + y \right)^{m + n} \]

\[ \Rightarrow \log\left( x^m \right) + \log\left( y^n \right) = \left( m + n \right) \log\left( x + y \right)\]

\[ \Rightarrow m\log x + n\log y = \left( m + n \right) \log\left( x + y \right)\]

Differentiating w.r.t. x, we get

\[\frac{m}{x} + \frac{n}{y}\frac{dy}{dx} = \frac{m + n}{x + y}\left( 1 + \frac{dy}{dx} \right)\]

\[ \Rightarrow \frac{m}{x} - \frac{\left( m + n \right)}{x + y} = \left( \frac{m + n}{x + y} - \frac{n}{y} \right)\frac{dy}{dx}\]

\[ \Rightarrow \left( \frac{my + ny - nx - ny}{y\left( x + y \right)} \right)\frac{dy}{dx} = \frac{mx + my - mx - nx}{x\left( x + y \right)}\]

\[ \Rightarrow \frac{dy}{dx}\left( \frac{my - nx}{y} \right) = \left( \frac{my - nx}{x} \right)\]

\[ \therefore \frac{dy}{dx} = \frac{y}{x}\]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Foreign Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

xdx + 2y dx = 0


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Solve the differential equation:

`e^(dy/dx) = x`


`xy dy/dx  = x^2 + 2y^2`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×