मराठी

Find the Particular Solution of the Differential Equation D Y D X = X Y X 2 + Y 2 Given that Y = 1 When X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 

बेरीज

उत्तर

\[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\]          .....(1)
\[\Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
Substituting the value of y = xv and \[\frac{dy}{dx} = v + x\frac{dv}{dx}\] in (1), we get
\[\therefore v + x\frac{dv}{dx} = \frac{x^2 v}{x^2 + x^2 v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{1 + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^3}{1 + v^2}\]
\[ \Rightarrow \frac{1 + v^2}{- v^3}dv = \frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 + v^2}{- v^3}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2 v^2} - \log v = \log x + C\]
\[\Rightarrow \frac{1}{2 \left( \frac{y}{x} \right)^2} - \log\frac{y}{x} = \log x + C\]
\[ \Rightarrow \frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x + C . . . . . \left( 2 \right)\]
\[ \Rightarrow \frac{0}{2} - \log\frac{1}{0} = \log0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (2), we get
\[\frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log x + \log\frac{y}{x}\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log y\]


 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 39 | पृष्ठ ८४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[5\frac{dy}{dx} = e^x y^4\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


y dx – x dy + log x dx = 0


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×