मराठी

Show that the Family of Curves for Which D Y D X = X 2 + Y 2 2 X Y , is Given by X 2 − Y 2 = C X - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]

Show that the family of curves for which the slope of the tangent at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] is given by x2 − y2 = Cx.

बेरीज

उत्तर

The given differential equation is \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}..........(1)\]

This is a homogeneous differential equation.

Putting y = vx and \[\frac{dy}{dx} = v + x\frac{dv}{dx}\] in (1), we get

\[v + x\frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2v x^2}\]

\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + v^2}{2v}\]

\[\Rightarrow \frac{1 + v^2}{2v} - v = x\frac{dv}{dx}\]

\[ \Rightarrow \frac{1 - v^2}{2v} = x\frac{dv}{dx}\]

\[ \Rightarrow \frac{2v}{1 - v^2}dv = \frac{dx}{x}\]

Integrating on both sides, we get

\[\int\frac{2v}{1 - v^2}dv = \int\frac{dx}{x}\]

\[ \Rightarrow \int\frac{- 2v}{1 - v^2}dv = - \int\frac{dx}{x}\]

\[ \Rightarrow \log\left( 1 - v^2 \right) = - \log x + \log C\]

\[ \Rightarrow \log\left( 1 - v^2 \right) + \log x = \log C\]

\[\Rightarrow \log\left( 1 - v^2 \right)x = \log C\]

\[ \Rightarrow \left( 1 - v^2 \right)x = C\]

\[ \Rightarrow \left( 1 - \frac{y^2}{x^2} \right)x = C\]

\[ \Rightarrow x^2 - y^2 = Cx\]

Thus, the family of curves for which \[\frac{dy}{dx}\] \[\frac{x^2 + y^2}{2xy}\] is given by \[x^2 - y^2 = Cx\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 72 | पृष्ठ १४७
आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 40 | पृष्ठ ८४

संबंधित प्रश्‍न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×