मराठी

Y D X + { X Log ( Y X ) } D Y − 2 X D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]
बेरीज

उत्तर

We have, 
\[y dx + \left\{ x \log \left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]
\[ \Rightarrow \left\{ 2x - x \log \left( \frac{y}{x} \right) \right\} dy = y dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{2x - x \log \left( \frac{y}{x} \right)}\]
This is a homogenoeus differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx}{2x - x \log v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v}{2 - \log v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{2 - \log v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 2v + v \log v}{2 - \log v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \log v - v}{2 - \log v}\]
\[ \Rightarrow \frac{2 - \log v}{v \log v - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2 - \log v}{v \log v - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 - \left( \log v - 1 \right)}{v\left( \log v - 1 \right)}dv = \int\frac{1}{x}dx\]
\[\text{ Putting }\log v - 1 = t\]
\[ \Rightarrow \frac{1}{v}dv = dt\]
\[ \therefore \int\frac{1 - t}{t}dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\left( \frac{1}{t} - 1 \right)dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| t \right| - t = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \log v - 1 \right| - \left( \log v - 1 \right) = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \log v - 1 \right| - \log v = \log \left| x \right| + \log C_1 ...........\left(\text{where, }\log C_1 = \log C - 1 \right)\]
\[ \Rightarrow \log \left| \frac{\log v - 1}{v} \right| = \log \left| C_1 x \right|\]
\[ \Rightarrow \frac{\log v - 1}{v} = C_1 x\]
\[ \Rightarrow \log v - 1 = C_1 xv\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\log \frac{y}{x} - 1 = C_1 x \times \frac{y}{x}\]
\[ \Rightarrow \log \frac{y}{x} - 1 = C_1 y\]
\[\text{ Hence, }\log \frac{y}{x} - 1 = C_1 y\text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 35 | पृष्ठ ८४

संबंधित प्रश्‍न

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Which of the following is a homogeneous differential equation?


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×