मराठी

Show that the given differential equation is homogeneous and solve them. (x2 – y2) dx + 2xy dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0

बेरीज

उत्तर

(x2 - y2) dx + 2xy dy = 0

Which can be written as

`dy/dx = (y^2 - x^2)/(2 xy)`

`= ((y/x)^2 - 1)/(2 (y/x))`                 ....(1)

Since R.H.S is of the form `g(y/x)`, and so it is a homogeneous function of degree zero

Therefore equation (1) is a homogeneous differential equation.

⇒ `dy/dx = v + x (dv)/dx`, then (1) become

`v + x (dv)/dx = (v^2 - 1)/(2v)`

⇒ `x (dv)/dx = (v^2 - 1)/(2v) - v`

⇒ `(2vdv)/(v^2 + 1) = -dx/x`                 ....(2)

Integrating (2) both sides, we get

log |v2 + 1| = - log |x| + C

⇒ log |(v2 + 1) x | = C

⇒ `log |(y^2 + x^2)/x| = C_1`                 ...`(∵ v = y/x)`

⇒ `|(y^2 + x^2)/x| = e^(C_(1))`

⇒ `(x^2 + y^2)/x =pm  e^(C_(1)) = C`    (say)

⇒ `x^2 + y^2 = Cx`

which is the required general solution of the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.5 [पृष्ठ ४०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.5 | Q 4 | पृष्ठ ४०६

संबंधित प्रश्‍न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×