Advertisements
Advertisements
प्रश्न
उत्तर
Given:-
\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\}dy = 0\]
\[ \Rightarrow xy \log\left( \frac{x}{y} \right) dx = - \left\{ y^2 - x^2 log\left( \frac{x}{y} \right) \right\}dy\]
\[ \Rightarrow \frac{dx}{dy} = \frac{- \left\{ y^2 - x^2 log\left( \frac{x}{y} \right) \right\}}{xy log\left( \frac{x}{y} \right)} = \frac{x^2 \log\left( \frac{x}{y} \right) - y^2}{xy log\left( \frac{x}{y} \right)}\]
It is a homogeneous equation .
We put x = vy
\[\frac{dx}{dy} = v + y\frac{dv}{dy}\]
\[So, v + y\frac{dv}{dy} = \frac{v^2 y^2 \log(v) - y^2}{v y^2 \log(v)}\]
\[v + y\frac{dv}{dy} = \frac{v^2 \log(v) - 1}{v \log(v)}\]
\[ \Rightarrow y\frac{dv}{dy} = \frac{v^2 log(v) - 1}{v log(v)} - v\]
\[ \Rightarrow y\frac{dv}{dy} = \frac{v^2 log(v) - 1 - v^2 log(v)}{v log(v)}\]
\[ \Rightarrow y\frac{dv}{dy} = \frac{- 1}{v log(v)}\]
\[ \Rightarrow v log(v) dv = \frac{- 1}{y}dy\]
On integrating both sides we get,
\[\int v \log(v) dv = - \int\frac{1}{y}dy\]
\[ \Rightarrow \frac{v^2}{2} \log(v) - \int\frac{v}{2} dv = - \log y + C\]
\[ \Rightarrow \frac{v^2}{2} log(v) - \frac{v^2}{4} = - \log y + C\]
\[ \Rightarrow \frac{v^2}{2}\left[ log(v) - \frac{1}{2} \right] = - \log y + C\]
\[ \Rightarrow v^2 \left[ log(v) - \frac{1}{2} \right] = - 2 log y + C\]
\[\text{ now putting back the values of v as }\frac{x}{y}\text{ we get, }\]
\[\frac{x^2}{y^2}\left[ log(v) - \frac{1}{2} \right] + \log y^2 = C\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)