Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
उत्तर
\[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \cos \left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx \cos v + x}{x \cos v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v \cos v + 1}{\cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + 1 - v \cos v}{\cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{\cos v}\]
\[ \Rightarrow \cos v dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\cos v dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \sin v = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x}, \text{ we get }\]
\[\sin\frac{y}{x} = \log \left| x \right| + C . . . . . \left( 1 \right)\]
\[\text{ At }x = 1, y = \frac{\pi}{4} ............\left(\text{Given} \right)\]
\[\text{ Putting }x = 1\text{ and }y = \frac{\pi}{4}\text{ in }(1),\text{ we get }\]
\[C = \frac{1}{\sqrt{2}}\]
\[\text{Putting }C = \frac{1}{\sqrt{2}}\text{ in }(1),\text{ we get }\]
\[\sin \frac{y}{x} = \log \left| x \right| + \frac{1}{\sqrt{2}}\]
\[\text{Hence, }\sin \frac{y}{x} = \log x + \frac{1}{\sqrt{2}}\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)