Advertisements
Advertisements
प्रश्न
उत्तर
\[\frac{y}{x}\cos \left( \frac{y}{x} \right)dx - \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = 0\]
\[ \Rightarrow \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = \frac{y}{x}\cos \left( \frac{y}{x} \right)dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}\cos \left( \frac{y}{x} \right)}{\frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- \sin v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow \left( \frac{\frac{1}{v}\sin v + \cos v}{\sin v} \right)dv = - \frac{1}{x}dx\]
\[ \Rightarrow \left( \frac{1}{v} + \cot v \right)dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\left( \frac{1}{v} + \cot v \right)dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v}dv + \int \cot v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| + \log \left| \sin v \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| vx\sin v \right| = \log C\]
\[ \Rightarrow \left| v x \sin v \right| = C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| y\sin \frac{y}{x} \right| = C\]
\[\text{ Hence, }\left| y\sin \frac{y}{x} \right| = C\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)