मराठी

Y X Cos ( Y X ) D X − { X Y Sin ( Y X ) + Cos ( Y X ) } D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

उत्तर

\[\frac{y}{x}\cos \left( \frac{y}{x} \right)dx - \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = 0\]
\[ \Rightarrow \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = \frac{y}{x}\cos \left( \frac{y}{x} \right)dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}\cos \left( \frac{y}{x} \right)}{\frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- \sin v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow \left( \frac{\frac{1}{v}\sin v + \cos v}{\sin v} \right)dv = - \frac{1}{x}dx\]
\[ \Rightarrow \left( \frac{1}{v} + \cot v \right)dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\left( \frac{1}{v} + \cot v \right)dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v}dv + \int \cot v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| + \log \left| \sin v \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| vx\sin v \right| = \log C\]
\[ \Rightarrow \left| v x \sin v \right| = C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| y\sin \frac{y}{x} \right| = C\]
\[\text{ Hence, }\left| y\sin \frac{y}{x} \right| = C\text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 23 | पृष्ठ ८३

संबंधित प्रश्‍न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×