Advertisements
Advertisements
प्रश्न
उत्तर
\[\frac{y}{x}\cos \left( \frac{y}{x} \right)dx - \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = 0\]
\[ \Rightarrow \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = \frac{y}{x}\cos \left( \frac{y}{x} \right)dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}\cos \left( \frac{y}{x} \right)}{\frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- \sin v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow \left( \frac{\frac{1}{v}\sin v + \cos v}{\sin v} \right)dv = - \frac{1}{x}dx\]
\[ \Rightarrow \left( \frac{1}{v} + \cot v \right)dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\left( \frac{1}{v} + \cot v \right)dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v}dv + \int \cot v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| + \log \left| \sin v \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| vx\sin v \right| = \log C\]
\[ \Rightarrow \left| v x \sin v \right| = C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| y\sin \frac{y}{x} \right| = C\]
\[\text{ Hence, }\left| y\sin \frac{y}{x} \right| = C\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)