हिंदी

Y X Cos ( Y X ) D X − { X Y Sin ( Y X ) + Cos ( Y X ) } D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

उत्तर

\[\frac{y}{x}\cos \left( \frac{y}{x} \right)dx - \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = 0\]
\[ \Rightarrow \left\{ \frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right) \right\}dy = \frac{y}{x}\cos \left( \frac{y}{x} \right)dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}\cos \left( \frac{y}{x} \right)}{\frac{x}{y}\sin \left( \frac{y}{x} \right) + \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v}{\frac{1}{v}\sin v + \cos v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- \sin v}{\frac{1}{v}\sin v + \cos v}\]
\[ \Rightarrow \left( \frac{\frac{1}{v}\sin v + \cos v}{\sin v} \right)dv = - \frac{1}{x}dx\]
\[ \Rightarrow \left( \frac{1}{v} + \cot v \right)dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\left( \frac{1}{v} + \cot v \right)dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v}dv + \int \cot v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| + \log \left| \sin v \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| vx\sin v \right| = \log C\]
\[ \Rightarrow \left| v x \sin v \right| = C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| y\sin \frac{y}{x} \right| = C\]
\[\text{ Hence, }\left| y\sin \frac{y}{x} \right| = C\text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 23 | पृष्ठ ८३

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×