Advertisements
Advertisements
प्रश्न
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
उत्तर
(x2 - y2) dx + 2xy dy = 0
Which can be written as
`dy/dx = (y^2 - x^2)/(2 xy)`
`= ((y/x)^2 - 1)/(2 (y/x))` ....(1)
Since R.H.S is of the form `g(y/x)`, and so it is a homogeneous function of degree zero
Therefore equation (1) is a homogeneous differential equation.
⇒ `dy/dx = v + x (dv)/dx`, then (1) become
`v + x (dv)/dx = (v^2 - 1)/(2v)`
⇒ `x (dv)/dx = (v^2 - 1)/(2v) - v`
⇒ `(2vdv)/(v^2 + 1) = -dx/x` ....(2)
Integrating (2) both sides, we get
log |v2 + 1| = - log |x| + C
⇒ log |(v2 + 1) x | = C
⇒ `log |(y^2 + x^2)/x| = C_1` ...`(∵ v = y/x)`
⇒ `|(y^2 + x^2)/x| = e^(C_(1))`
⇒ `(x^2 + y^2)/x =pm e^(C_(1)) = C` (say)
⇒ `x^2 + y^2 = Cx`
which is the required general solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Which of the following is a homogeneous differential equation?
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.