हिंदी

Solve the Following Differential Equation : [ Y − X Cos ( Y X ) ] D Y + [ Y Cos ( Y X ) − 2 X Sin ( Y X ) ] D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .

उत्तर

The given differential equation is

\[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\].

\[\therefore \frac{d y}{d x} = \frac{2x\sin\left( \frac{y}{x} \right) - y\cos\left( \frac{y}{x} \right)}{y - x\cos\left( \frac{y}{x} \right)}\]

This is a homogeneous differential equation.
Putting y = vx and \[\frac{d y}{d x} = v + x\frac{d v}{d x}\] it reduces to

\[v + x\frac{d v}{d x} = \frac{2x\sin v - vx\cos v}{vx - x\cos v}\]

\[ \Rightarrow v + x\frac{d v}{d x} = \frac{2\sin v - v\cos v}{v - \cos v}\]

\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v\cos v}{v - \cos v} - v\]

\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v\cos v - v^2 + v\cos v}{v - \cos v}\]

\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v^2}{v - \cos v}\]

\[ \Rightarrow \left( \frac{v - \cos v}{2\sin v - v^2} \right)dv = \frac{dx}{x}\]

\[ \Rightarrow \frac{- 1}{2}\left( \frac{2\cos v - 2v}{2\sin v - v^2} \right)dv = \frac{dx}{x}\]

Integrating on both sides, we get

\[- \frac{1}{2}\int\frac{2\cos v - 2v}{2\sin v - v^2}dv = \int\frac{dx}{x}\]

\[ \Rightarrow - \frac{1}{2}\log\left( 2\sin v - v^2 \right) = \log x + \log C \left( \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log x + C \right)\]

\[\text { where} \]

\[C =\text { Constant of integration } \]

\[\Rightarrow - \frac{1}{2}\log\left( 2\sin v - v^2 \right) = \log x + \log C\]

\[ \Rightarrow \log\left( \frac{1}{2\sin v - v^2} \right) = 2\log Cx\]

\[ \Rightarrow \frac{1}{2\sin v - v^2} = C^2 x^2 \]

\[ \Rightarrow x^2 \left[ 2\sin\left( \frac{y}{x} \right) - \frac{y^2}{x^2} \right] = \frac{1}{C^2} = k\]

\[ \Rightarrow 2 x^2 \sin\left( \frac{y}{x} \right) - y^2 = k\]

This is the solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

संबंधित प्रश्न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


Which of the following is a homogeneous differential equation?


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×