हिंदी

Show that the given differential equation is homogeneous and solve them. x dy-y dx= x2+y2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`

योग

उत्तर

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`,

Which can be written as `x  dy/dx = y + sqrt (x^2 + y^2)`

or `dy/dx = y/x + sqrt (1 + (y/x)^2)`        ....(1)

Since R.H.S. is of the form `g(y/x)`, and so it is a homogeneous function of degree zero.

Therefore equation (1) is a homogeneous differential equation.

To solve this, put y = vx

⇒ `dy/dx = v + x (dv)/dx`

Substituting the value of y and `dy/dx` in (1), we get

`v + x (dv)/dx = v + sqrt (1 + v^2)`

⇒ `x (dv)/dx = sqrt(1 + v^2)`

⇒ `dx/x = (dv)/sqrt(1 + v^2)`

⇒ `int dx/x = int (dv)/ sqrt(1 + v^2)`

⇒ `log x + log C_1 = log |v + sqrt (1+ v^2)|`

⇒ `log x + log C_1 = log |y/x + sqrt (1 + y^2/x^2)|`

⇒ `log C_1 x = log |y + sqrt (x^2 + y^2)| - log x`

⇒ `pm C_1 x^2 = y + sqrt (x^2 + y^2)`

⇒ `Cx^2 = y + sqrt (x^2 + y^2)` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.5 [पृष्ठ ४०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.5 | Q 6 | पृष्ठ ४०६

संबंधित प्रश्न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Which of the following is a homogeneous differential equation?


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×