Advertisements
Advertisements
प्रश्न
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
उत्तर
`x dy - y dx = sqrt(x^2 + y^2) dx`,
Which can be written as `x dy/dx = y + sqrt (x^2 + y^2)`
or `dy/dx = y/x + sqrt (1 + (y/x)^2)` ....(1)
Since R.H.S. is of the form `g(y/x)`, and so it is a homogeneous function of degree zero.
Therefore equation (1) is a homogeneous differential equation.
To solve this, put y = vx
⇒ `dy/dx = v + x (dv)/dx`
Substituting the value of y and `dy/dx` in (1), we get
`v + x (dv)/dx = v + sqrt (1 + v^2)`
⇒ `x (dv)/dx = sqrt(1 + v^2)`
⇒ `dx/x = (dv)/sqrt(1 + v^2)`
⇒ `int dx/x = int (dv)/ sqrt(1 + v^2)`
⇒ `log x + log C_1 = log |v + sqrt (1+ v^2)|`
⇒ `log x + log C_1 = log |y/x + sqrt (1 + y^2/x^2)|`
⇒ `log C_1 x = log |y + sqrt (x^2 + y^2)| - log x`
⇒ `pm C_1 x^2 = y + sqrt (x^2 + y^2)`
⇒ `Cx^2 = y + sqrt (x^2 + y^2)`
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Which of the following is a homogeneous differential equation?
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)