हिंदी

Show that the given differential equation is homogeneous and solve them. y′=x+yx - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`

योग

उत्तर

`dy/dx = (x + y)/x`

∵ The degree of numerator and denominator is the same so the given differential equation is a homogeneous differential equation.

∴ Putting y = vx 

In equation (i)

`dy/dx = v + x  dy/dx`

`v + x .dy/dx = (x + vx)/x`

`v + x .dy/dx = 1 + v`

`=> x. dy/dx = 1`

`=> dv = dx/x`

On integrating on both sides,

`int 1. (dv) = int 1/x`  dv

v = log `abs x = C`

`=> y/x = log abs x + C`

`= y = x log abs x + Cx`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.5 [पृष्ठ ४०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.5 | Q 2 | पृष्ठ ४०६

संबंधित प्रश्न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×