हिंदी

Read the following passage: An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. - Mathematics

Advertisements
Advertisements

प्रश्न

Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)
योग

उत्तर

I. (x2 – y2) dx + 2xy dy = 0

`dy/dx = (y^2 - x^2)/(2xy)`

= `(x^2(y^2/x^2 - 1))/(x^2(2 y/x))`

= `g(y/x)`

II. Let y = vx

`dy/dx = v + x (dv)/dx`

 `v + x (dv)/dx = (v^2x^2 - x^2)/(2vx^2)`

= `(v^2 - 1)/(2v)`

`x (dv)/dx = (v^2 - 1)/(2v) - v`

= `(v^2 - 1 - 2v^2)/(2v)`

= `-((1 + v^2))/(2v)`

`-int (2v)/(1 + v^2) dv = int dx/x`

`- log |1 + v^2| - log |x| + C` = 0

`- log |1 + y^2/x^2| - log |x| + C` = 0

`-log |(x^2 + y^2)/x^2| - log |x| + C` = 0

`- log |(x^2 + y^2)/x| + C` = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×