Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
उत्तर
(xy − y2) dx − x2 dy = 0, y(1) = 1
This is an homogenous equation, put y = vx
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\left( xy - y^2 \right) = x^2 \left( \frac{dy}{dx} \right)\]
\[\left( v x^2 - v^2 x^2 \right) = x^2 \left( v + x\frac{dv}{dx} \right)\]
\[v x^2 \left( 1 - v \right) = x^2 \left( v + x\frac{dv}{dx} \right)\]
\[v\left( 1 - v \right) = v + x\frac{dv}{dx}\]
\[v - v^2 = v + x\frac{dv}{dx}\]
\[ - v^2 = x\frac{dv}{dx}\]
\[ - \frac{1}{x}dx = \frac{1}{v^2}dv\]
On integrating both sides we get,
\[- \int\frac{1}{x}dx = \int\frac{1}{v^2}dv\]
\[ - \log_e x = \frac{v^{- 2 + 1}}{- 2 + 1} + c\]
\[ - \log_e x = \frac{v^{- 1}}{- 1} + c\]
\[ - \log_e x = - \frac{1}{v} + c\]
\[ - \log_e x = - \frac{1}{v} + c\]
\[\frac{x}{y} - \log_e x = c\]
\[\text{ As }y\left( 1 \right) = 1\]
\[\frac{1}{1} - \log_e 1 = c\]
\[ \Rightarrow c = 1\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`