हिंदी

Solve the Following Initial Value Problem: (Xy − Y2) Dx − X2 Dy = 0, Y(1) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1

उत्तर

(xy − y2) dx − x2 dy = 0, y(1) = 1
This is an homogenous equation, put y = vx
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\left( xy - y^2 \right) = x^2 \left( \frac{dy}{dx} \right)\]
\[\left( v x^2 - v^2 x^2 \right) = x^2 \left( v + x\frac{dv}{dx} \right)\]
\[v x^2 \left( 1 - v \right) = x^2 \left( v + x\frac{dv}{dx} \right)\]
\[v\left( 1 - v \right) = v + x\frac{dv}{dx}\]
\[v - v^2 = v + x\frac{dv}{dx}\]
\[ - v^2 = x\frac{dv}{dx}\]
\[ - \frac{1}{x}dx = \frac{1}{v^2}dv\]
On integrating both sides we get,
\[- \int\frac{1}{x}dx = \int\frac{1}{v^2}dv\]
\[ - \log_e x = \frac{v^{- 2 + 1}}{- 2 + 1} + c\]
\[ - \log_e x = \frac{v^{- 1}}{- 1} + c\]
\[ - \log_e x = - \frac{1}{v} + c\]
\[ - \log_e x = - \frac{1}{v} + c\]
\[\frac{x}{y} - \log_e x = c\]
\[\text{ As }y\left( 1 \right) = 1\]
\[\frac{1}{1} - \log_e 1 = c\]
\[ \Rightarrow c = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 36.4 | पृष्ठ ८४

संबंधित प्रश्न

 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×