हिंदी

Find the Particular Solution of the Differential Equation ( X − Y ) D Y D X = X + 2 Y , Given that When X = 1, Y = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.

योग

उत्तर

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v + v^2}{1 - v}\]
\[ \Rightarrow \frac{1 - v}{1 + v + v^2} dv = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{1 - v}{1 + v + v^2} dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1 - 1}{1 + v + v^2} = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv + \frac{1}{2}\int\frac{1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{1 + v + v^2 + \frac{1}{4} - \frac{1}{4}}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \sqrt{3}\tan {}^{- 1} \left| \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right| - \frac{1}{2}\log \left| 1 + v + v^2 \right| = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| \frac{x^2 + xy + y^2}{x^2} \right| = \log \left| x \right| + C\]
\[ \Rightarrow \sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| + \log \left| x \right| = \log \left| x \right| + C \]
\[ \Rightarrow \sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| = C . . . . . (1) \]
\[\text{ At }x = 1, y = 0 ...........\left(\text{Given} \right)\]
\[\text{ Putting }x = 1\text{ and }y = 0\text{ in }(1),\text{ we get }\]
\[\sqrt{3} \tan^{- 1} \left| \frac{1}{\sqrt{3}} \right| - \frac{1}{2}\log \left| 1 \right| = C\]
\[ \Rightarrow C = \sqrt{3} \tan^{- 1} \left| \frac{1}{\sqrt{3}} \right|\]
\[ \Rightarrow C = \sqrt{3} \times \frac{\pi}{6}\]
\[ \Rightarrow C = \frac{\pi}{2\sqrt{3}}\]
Substituting the value of C in (1), we get 
\[\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| = \frac{\pi}{2\sqrt{3}}\]
\[ \Rightarrow 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \log \left| x^2 + xy + y^2 \right| = \frac{\pi}{\sqrt{3}}\]
\[ \Rightarrow \log \left| x^2 + xy + y^2 \right| = 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{\pi}{\sqrt{3}}\]
\[\text{ Hence, }\log \left| x^2 + xy + y^2 \right| = 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{\pi}{\sqrt{3}}\text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 38 | पृष्ठ ८४

संबंधित प्रश्न

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Which of the following is a homogeneous differential equation?


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×