Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( 1 + e^\frac{x}{y} \right) dx + e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{e^\frac{x}{y} \left( 1 - \frac{x}{y} \right)}{1 + e^\frac{x}{y}}\]
This is a homogeneous differential equation .
\[\text{ Putting }x = vy \text{ and }\frac{dx}{dy} = v + y\frac{dv}{dy},\text{ we get }\]
\[v + y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v} - v\]
\[ \Rightarrow y\frac{dv}{dy} = \frac{- e^v + e^v v - v - v e^v}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{v + e^v}{1 + e^v}\]
\[ \Rightarrow \frac{1 + e^v}{v + e^v}dv = - \frac{1}{y}dy\]
Integrating both sides, we get
\[\int\frac{1 + e^v}{v + e^v}dv = - \int\frac{1}{y}dy\]
\[ \Rightarrow \log \left| v + e^v \right| = - \log \left| y \right| + \log C\]
\[ \Rightarrow \left| v + e^v \right| = \left| \frac{C}{y} \right|\]
\[ \Rightarrow v + e^v = \frac{C}{y}\]
\[\text{ Putting }v = \frac{x}{y},\text{ we get }\]
\[\frac{x}{y} + e^\frac{x}{y} = \frac{C}{y}\]
\[ \Rightarrow x + y e^\frac{x}{y} = C\]
\[\text{ Hence, }x + y e^\frac{x}{y} = C\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
Which of the following is not a homogeneous function of x and y.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)