हिंदी

State whether the following statement is True or False: A homogeneous differential equation is solved by substituting y = vx and integrating it - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

True

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.8: Differential Equation and Applications - Q.3

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×