Advertisements
Online Mock Tests
Chapters
1.2: Matrices
1.3: Differentiation
1.4: Applications of Derivatives
1.5: Integration
1.6: Definite Integration
1.7: Application of Definite Integration
▶ 1.8: Differential Equation and Applications
2.1: Commission, Brokerage and Discount
2.2: Insurance and Annuity
2.3: Linear Regression
2.4: Time Series
2.5: Index Numbers
2.6: Linear Programming
2.7: Assignment Problem and Sequencing
2.8: Probability Distributions
![SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.8 - Differential Equation and Applications SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.8 - Differential Equation and Applications - Shaalaa.com](/images/mathematics-and-statistics-commerce-english-12-standard-hsc_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 1.8: Differential Equation and Applications
Below listed, you can find solutions for Chapter 1.8 of Maharashtra State Board SCERT Maharashtra for Mathematics and Statistics (Commerce) [English] 12 Standard HSC.
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.8 Differential Equation and Applications Q.1
MCQ [1 Mark]
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
y = aex
y = be2x
y = be–2x
y = eax
Choose the correct alternative:
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
4 hours
6 hours
8 hours
10 hours
Choose the correct alternative:
The integrating factor of `("d"y)/("d"x) + y` = e–x is
x
– x
ex
y = e–x
Choose the correct alternative:
The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is
ye–x = x + c
yex = x + c
yex = 2x + c
ye–x = 2x + c
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
`xy + ("d"y)/("d"x)` = 0
`x ("d"y)/("d"x) + y` = 0
`("d"y)/("d"x) - 4xy` =0
`x ("d"y)/("d"x) + 1` = 0
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
`3log x + 7/y` = c
`2log x + 3/y = c`
log x – log y = log c
`3log y + 2/x` = c
The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.
3, 1
1, 3
3, 3
1, 1
Choose the correct alternative:
The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively
3, 1
1, 3
3, 3
1, 1
Choose the correct alternative:
The solution of `dy/dx` = 1 is ______.
x + y = c
xy = c
x2 + y2 = c
y – x = c
Choose the correct alternative:
The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is
x3 + y3 = 7
x2 + y2 = c
x3 + y3 = c
x + y = c
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.8 Differential Equation and Applications Q.2
Fill in the following blanks [1 Mark]
Order of highest derivative occurring in the differential equation is called the ______ of the differential equation
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Order and degree of differential equation are always ______ integers
The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
The solution of `("d"y)/("d"x) + y` = 3 is ______
Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______
Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______
The function y = ex is solution ______ of differential equation
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.8 Differential Equation and Applications Q.3
[1 Mark]
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
True
False
State whether the following statement is True or False:
Order and degree of differential equation are always positive integers.
True
False
State whether the following statement is True or False:
The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any
True
False
Order of highest derivative occurring in the differential equation is called the degree of the differential equation
True
False
State whether the following statement is True or False:
The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined
True
False
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
True
False
State whether the following statement is True or False:
Order and degree of differential equation `x ("d"^3y)/("d"x^3) + 6(("d"^2y)/("d"x^2))^2 + y` = 0 is (2, 2)
True
False
State whether the following statement is True or False:
Number of arbitrary constant in the general solution of a differential equation is equal to order of D.E.
True
False
State whether the following statement is True or False:
A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation
True
False
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
True
False
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.8 Differential Equation and Applications Q.4
Attempt the following questions [3 Marks]
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.8 Differential Equation and Applications Q.5
Attempt the following questions [4 Marks]
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Form the differential equation from the relation x2 + 4y2 = 4b2
If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours `("Given" sqrt(2) = 1.414)`
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.8 Differential Equation and Applications Q.6
Attempt the following questions (Activity) [4 Marks]
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k"int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = 100000
∴ log 100000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 100000
∴ log p – log 100000 = kt
∴ `log ("P"/100000)` = kt ......(i)
Since the number doubled in 25 years, i.e., when t = 25, p = 200000
∴ `log (200000/100000)` = 25k
∴ k = `square`
∴ equation (i) becomes, `log("p"/100000) = square`
When p = 400000, then find t.
∴ `log(400000/100000) = "t"/25 log 2`
∴ `log 4 = "t"/25 log 2`
∴ t = `25 (log 4)/(log 2)`
∴ t = `square` years
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `"dx"/"dt"` which is proportional to x.
∴ `"dx"/"dt" ∝ "x"`
∴ `"dx"/"dt"` = kx, where k is a constant
∴ `square`
On integrating, we get
`int "dx"/"x" = "k" int "dt"`
∴ log x = kt + c
Initially, i.e. when t = 0, let x = x0
∴ log x0 = k × 0 + c
∴ c = `square`
∴ log x = kt + log x0
∴ log x - log x0 = kt
∴ `log ("x"/"x"_0)`= kt ......(1)
Since the number doubles in 4 hours, i.e. when t = 4,
x = 2x0
∴ `log ((2"x"_0)/"x"_0)` = 4k
∴ k = `square`
∴ equation (1) becomes, `log ("x"/"x"_0) = "t"/4` log 2
When t = 12, we get
`log ("x"/"x"_0) = 12/4` log 2 = 3 log 2
∴ `log ("x"/"x"_0)` = log 23
∴ `"x"/"x"_0 = 8`
∴ x = `square`
∴ number of bacteria will be 8 times the original number in 12 hours.
Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" prop "p"`
∴ `"dp"/"dt"` = kp, where k is a constant.
∴ `"dp"/"p"` = k dt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e. when t = 0, let p = 30000
∴ log 30000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 30000
∴ log p - log 30000 = kt
∴ `log("p"/30000)` = kt .....(1)
when t = 40, p = 40000
∴ `log (40000/30000) = 40"k"`
∴ k = `square`
∴ equation (1) becomes, `log ("p"/30000)` = `square`
∴ `log ("p"/30000) = "t"/40 log (4/3)`
∴ p = `square`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.
∴ `("d"x)/"dt" ∝ x`
∴ `("d"x)/"dt"` = kx, where k is a constant
∴ `("d"x)/x` = kdt
On integrating, we get
`int ("d"x)/x = "k" int "dt"`
∴ log x = kt + c .....(1)
∴ x = aekt where a = ec
Initially, i.e.,when t = 0, let x = N
∴ N = aek(0)
∴ a = `square`
∴ a = N, x = Nekt ......(2)
When t = 4, x = 2N
From equation (2), 2N = Ne4k
∴ e4k = 2
∴ ek = `square`
Now we have to find out t, when x = 16N
From equation (2),
16N = Nekt
∴ 16 = ekt
∴ `"t"/4 = square` hours
Hence, number of bacteria will be 16N in `square` hours
The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = N
∴ log N = k × 0 + c
∴ c = `square`
When t = 80, p = 2N
∴ log 2N = 80k + log N
∴ log 2N – log N = 80k
∴ `log ((2"N")/"N")` = 80k
∴ log (2) = 80k
∴ k = `square`
∴ p = 3N, then t = ?
∴ log p = `log2/80 "t" + log "N"`
∴ log 3N – log N = `square`
∴ t = `square` = `square` years
Solutions for 1.8: Differential Equation and Applications
![SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.8 - Differential Equation and Applications SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.8 - Differential Equation and Applications - Shaalaa.com](/images/mathematics-and-statistics-commerce-english-12-standard-hsc_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.8 - Differential Equation and Applications
Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics (Commerce) [English] 12 Standard HSC Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. SCERT Maharashtra solutions for Mathematics Mathematics and Statistics (Commerce) [English] 12 Standard HSC Maharashtra State Board 1.8 (Differential Equation and Applications) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. SCERT Maharashtra textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.8 Differential Equation and Applications are Differential Equations, Order and Degree of a Differential Equation, Formation of Differential Equation by Eliminating Arbitary Constant, Differential Equations with Variables Separable Method, Homogeneous Differential Equations, Linear Differential Equations, Application of Differential Equations.
Using SCERT Maharashtra Mathematics and Statistics (Commerce) [English] 12 Standard HSC solutions Differential Equation and Applications exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in SCERT Maharashtra Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics (Commerce) [English] 12 Standard HSC students prefer SCERT Maharashtra Textbook Solutions to score more in exams.
Get the free view of Chapter 1.8, Differential Equation and Applications Mathematics and Statistics (Commerce) [English] 12 Standard HSC additional questions for Mathematics Mathematics and Statistics (Commerce) [English] 12 Standard HSC Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.