हिंदी

A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution

रिक्त स्थान भरें

उत्तर

particular

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.8: Differential Equation and Applications - Q.2

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

(1 − x2) dy + xy dx = xy2 dx


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[x\frac{dy}{dx} = x + y\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The solution of the differential equation y1 y3 = y22 is


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve:

(x + y) dy = a2 dx


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The function y = ex is solution  ______ of differential equation


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×