Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
उत्तर
We have,
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \tan x\text{ and }Q = x^2 \cot x + 2x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\tan x dx} \]
\[ = e^{log\left| \sec x \right|} = \sec x\]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }I.F.= \sec x,\text{ we get }\]
\[\sec x\left( \frac{dy}{dx} + y\tan x \right) = \sec x\left( x^2 \tan x + 2x \right)\]
\[ \Rightarrow \sec x\left( \frac{dy}{dx} + y\tan x \right) = x^2 \tan x \sec x + 2x \sec x\]
Integrating both sides with respect to x, we get
\[ \Rightarrow y \sec x = \int x^2 \tan x \sec x dx + 2sec x\int x dx - 2\int\left[ \frac{d}{dx}\left( sec x \right)\int x dx \right]dx + C\]
\[ \Rightarrow y \sec x = \int x^2 \tan x \sec\ x dx + x^2 \sec x - \int x^2 \tan x \sec x dx + C\]
\[ \Rightarrow y \sec x = x^2 \sec x + C\]
\[ \Rightarrow y = x^2 + C\cos x . . . . . \left( 2 \right)\]
Now,
\[y\left( 0 \right) = 1\]
\[ \therefore 1 = 0 + C\cos 0\]
\[ \Rightarrow C = 1\]
\[\text{Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y = x^2 + \cos x\]
\[\text{ Hence, }y = x^2 + \cos x\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
(y2 + 1) dx − (x2 + 1) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
3x2 dy = (3xy + y2) dx
A population grows at the rate of 5% per year. How long does it take for the population to double?
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
x2y dx – (x3 + y3) dy = 0
`dy/dx = log x`
Solve the following differential equation y2dx + (xy + x2) dy = 0
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.