हिंदी

( X 3 + X 2 + X + 1 ) D Y D X = 2 X 2 + X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

उत्तर

We have, 
\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 x^2 + x}{x^3 + x^2 + x + 1}\]
\[ \Rightarrow dy = \frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)} \right\}dx\]
\[ \Rightarrow y = \int\left\{ \frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)} \right\}dx\]
\[\text{ Let }\frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow 2 x^2 + x = A x^2 + A + B x^2 + Bx + Cx + C\]
\[ \Rightarrow 2 x^2 + x = \left( A + B \right) x^2 + \left( B + C \right)x + \left( A + C \right)\]
Comparing the coefficients on both sides, we get
\[A + B = 2 . . . . . \left( 1 \right)\]
\[B + C = 1 . . . . . \left( 2 \right)\]
\[A + C = 0 . . . . . \left( 3 \right)\]
\[\text{ Solving }\left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right),\text{ we get }\]
\[A = \frac{1}{2}\]
\[B = \frac{3}{2}\]
\[C = - \frac{1}{2}\]
\[ \therefore y = \frac{1}{2}\int\frac{1}{\left( x + 1 \right)}dx + \int\frac{\frac{3}{2}x - \frac{1}{2}}{x^2 + 1} dx\]
\[ = \frac{1}{2}\int\frac{1}{\left( x + 1 \right)}dx + \frac{1}{2}\int\frac{3x}{x^2 + 1}dx - \frac{1}{2}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{2}\int\frac{1}{\left( x + 1 \right)}dx + \frac{3}{4}\int\frac{2x}{x^2 + 1}dx - \frac{1}{2}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{4}\log\left| x^2 + 1 \right| - \frac{1}{2} \tan^{- 1} x + C\]
\[\text{ Hence, }y = \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{4}\log\left| x^2 + 1 \right| - \frac{1}{2} \tan^{- 1} x +\text{ C is the solution to the given differential equation }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 21 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = \log x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

xy (y + 1) dy = (x2 + 1) dx


\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

`dy/dx + y = e ^-x`


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

dr = a r dθ − θ dr


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the differential equation xdx + 2ydy = 0


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×