हिंदी

In a Bank Principal Increases at the Rate of R% per Year. Find the Value of R If ₹100 Double Itself in 10 Years (Loge 2 = 0.6931). - Mathematics

Advertisements
Advertisements

प्रश्न

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).

उत्तर

Let P be the principal at any instant t.
Given:
\[\frac{dP}{dt} = \frac{r}{100}P\]
\[ \Rightarrow \frac{dP}{P} = \frac{r}{100}dt\]
Integrating both sides, we get
\[\int\frac{dP}{P} = \int\frac{r}{100}dt\]
\[ \Rightarrow \log P = \frac{rt}{100} + C . . . . . . (1)\]
\[\text{ Initially, i . e . at t = 0, let }P = P_0 . \]
\[\text{ Putting }P = P_0 ,\text{ we get }\]
\[\log P_0 = C, \]
\[\text{ Putting }C = \log P_0\text{ in }(1), \text{ we get }\]
\[\log P = \frac{rt}{100} + \log P_0 \]
\[ \Rightarrow \log \frac{P}{P_0} = \frac{rt}{100}\]
\[\text{ Substituting }P_0 = 100, P = 2 P_0 = 200\text{ and }t = 10 \text{ in }(2), \text{ we get }\]
\[\log 2 = \frac{r}{10}\]
\[ \therefore r = 10 \log 2\]
\[ = 10 \times 0 . 6931\]
\[ = 6 . 931\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 55 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

tan y dx + sec2 y tan x dy = 0


(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

xdx + 2y dx = 0


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation:

dr = a r dθ − θ dr


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×