Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\sin \frac{dy}{dx} = k\]
\[ \Rightarrow \frac{dy}{dx} = \sin^{- 1} k\]
\[ \Rightarrow dy = \left\{ \sin^{- 1} k \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left( \sin^{- 1} k \right) dx\]
\[ \Rightarrow y = x \sin^{- 1} k + C . . . . . \left( 1 \right)\]
\[ \text{ It is given that }y\left( 0 \right) = 1 . \]
\[ \therefore 1 = 0 \times \sin^{- 1} k + C\]
\[ \Rightarrow C = 1\]
\[\text{ Substituting the value of C in }\left( 1 \right),\text{ we get }\]
\[y = x \sin^{- 1} k + 1\]
\[ \Rightarrow y - 1 = x \sin^{- 1} k \]
\[\text{ Hence, }y - 1 = x \sin^{- 1} \text{ k is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
xy dy = (y − 1) (x + 1) dx
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
(x + y) (dx − dy) = dx + dy
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the differential equation:
dr = a r dθ − θ dr
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solve: ydx – xdy = x2ydx.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0