Advertisements
Advertisements
प्रश्न
Solve the differential equation:
dr = a r dθ − θ dr
उत्तर
dr = a r dθ − θ dr
∴ (1 + θ) dr = a r dθ
∴ `(dr)/r = a (dθ)/((1 + θ))`
Integrating on both sides, we get
`int (dr)/r = a int (dθ)/(1+θ)`
log | r | = a log | 1 + θ| + log | c |
∴ log | r | = log | c(1 + θ)a|
∴ r = c (1 + θ)a
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
C' (x) = 2 + 0.15 x ; C(0) = 100
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
x2 dy + y (x + y) dx = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve: ydx – xdy = x2ydx.