Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
उत्तर
Given:
\[\left( 1 - y^2 \right)\left( 1 + \log x \right)dx + 2xydy = 0\]
\[ \Rightarrow \left( 1 - y^2 \right)\left( 1 + \log x \right)dx = - 2xydy\]
\[ \Rightarrow \left( \frac{1 + \log x}{2x} \right)dx = - \left( \frac{y}{1 - y^2} \right)dy . . . . . \left( 1 \right)\]
Let:
\[1 + \log x = t \]
and
\[\left( 1 - y^2 \right) = p\]
\[ \Rightarrow \frac{1}{x}dx = dt\text{ and }- 2ydy = dp\]
\[\text{ Therefore, }\left( 1 \right)\text{ becomes }\]
\[\int\frac{t}{2}dt = \int\frac{1}{2p}dp\]
\[ \Rightarrow \frac{t^2}{4} = \frac{\log p}{2} + C . . . . . \left( 2 \right)\]
\[\text{ Substituting the values of t and p in }\left( 2 \right), \text{ we get }\]
\[\frac{\left( 1 + \log x \right)^2}{4} = \frac{\log\left( 1 - y^2 \right)}{2} + C . . . . . \left( 3 \right)\]
\[\text{ At }x = 1 \text{ and }y = 0, \left( 3 \right)\text{ becomes }\]
\[C = \frac{1}{4}\]
\[\text{ Substituting the value of C in }\left( 3 \right),\text{ we get }\]
\[\frac{\left( 1 + \log x \right)^2}{4} = \frac{\log\left( 1 - y^2 \right)}{2} + \frac{1}{4}\]
\[ \Rightarrow \left( 1 + \log x \right)^2 = 2\log\left( 1 - y^2 \right) + 1\]
Or
\[ \left( \log x \right)^2 + \log x^2 = \log \left( 1 - y^2 \right)^2 \]
It is the required particular solution .
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(1 + x2) dy = xy dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
The solution of `dy/ dx` = 1 is ______
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Solve the differential equation:
`e^(dy/dx) = x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve the differential equation `"dy"/"dx" + 2xy` = y