हिंदी

In a Bank Principal Increases at the Rate of 5% per Year. an Amount of Rs 1000 is Deposited with this Bank, How Much Will It Worth After 10 Years (E0.5 = 1.648). - Mathematics

Advertisements
Advertisements

प्रश्न

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).

योग

उत्तर

Let at any instant t, the principal be P .
Here, it is given that the principal increases at the rate of 5 % per year . 
\[\frac{dP}{dt} = \frac{5P}{100}\]
\[ \Rightarrow \frac{dP}{P} = \frac{1}{20}dt\]
Integrating both sides, we get 
\[\ln P = \frac{t}{20} + \ln C ...........(1) \]
Initially at t = 0, it is given that P = Rs 1000 .
\[\ln 1000 = \ln C\]
Substituting the value of ln C in (1), we get
\[\ln P = \frac{t}{20} + \ln 1000\]
\[\text{ Putting }t = 10, \text{ we get }\]
\[\ln \frac{P}{1000} = 0 . 5\]
\[ \Rightarrow \frac{P}{1000} = e^{0 . 5} \]
\[ \Rightarrow P = 1000 \times 1 . 648\]
\[ = 1648\]
Therefore, Rs 1000 will be worth Rs 1648 after 10 years .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 56 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

xy dy = (y − 1) (x + 1) dx


\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation y1 y3 = y22 is


The differential equation satisfied by ax2 + by2 = 1 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`dy/dx + y` = 3


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×