Advertisements
Advertisements
प्रश्न
y (1 + ex) dy = (y + 1) ex dx
उत्तर
We have,
\[y\left( 1 + e^x \right) dy = \left( y + 1 \right) e^x dx\]
\[ \Rightarrow \frac{y}{y + 1}dy = \frac{e^x}{1 + e^x}dx\]
Integrating both sides, we get
\[\int\frac{y}{y + 1}dy = \int\frac{e^x}{1 + e^x}dx\]
\[\text{ Substituting }1 + e^x = t, \text{ we get }\]
\[ e^x dx = dt\]
\[ \therefore \int\frac{y}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow \int\frac{y + 1 - 1}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow \int dy - \int\frac{1}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow y - \log \left| y + 1 \right| = \log \left| t \right| + C\]
\[ \Rightarrow y - \log \left| y + 1 \right| = \log \left| 1 + e^x \right| + C\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = cx + 2c2 is a solution of the differential equation
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(sin x + cos x) dy + (cos x − sin x) dx = 0
(1 + x2) dy = xy dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
3x2 dy = (3xy + y2) dx
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`dy/dx + y` = 3
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: