हिंदी

Y (1 + Ex) Dy = (Y + 1) Ex Dx - Mathematics

Advertisements
Advertisements

प्रश्न

y (1 + ex) dy = (y + 1) ex dx

उत्तर

We have,
\[y\left( 1 + e^x \right) dy = \left( y + 1 \right) e^x dx\]
\[ \Rightarrow \frac{y}{y + 1}dy = \frac{e^x}{1 + e^x}dx\]
Integrating both sides, we get 
\[\int\frac{y}{y + 1}dy = \int\frac{e^x}{1 + e^x}dx\]
\[\text{ Substituting }1 + e^x = t, \text{ we get }\]
\[ e^x dx = dt\]
\[ \therefore \int\frac{y}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow \int\frac{y + 1 - 1}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow \int dy - \int\frac{1}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow y - \log \left| y + 1 \right| = \log \left| t \right| + C\]
\[ \Rightarrow y - \log \left| y + 1 \right| = \log \left| 1 + e^x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 28 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

3x2 dy = (3xy + y2) dx


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`dy/dx + y` = 3


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×