Advertisements
Advertisements
प्रश्न
y (1 + ex) dy = (y + 1) ex dx
उत्तर
We have,
\[y\left( 1 + e^x \right) dy = \left( y + 1 \right) e^x dx\]
\[ \Rightarrow \frac{y}{y + 1}dy = \frac{e^x}{1 + e^x}dx\]
Integrating both sides, we get
\[\int\frac{y}{y + 1}dy = \int\frac{e^x}{1 + e^x}dx\]
\[\text{ Substituting }1 + e^x = t, \text{ we get }\]
\[ e^x dx = dt\]
\[ \therefore \int\frac{y}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow \int\frac{y + 1 - 1}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow \int dy - \int\frac{1}{y + 1}dy = \int\frac{1}{t}dt\]
\[ \Rightarrow y - \log \left| y + 1 \right| = \log \left| t \right| + C\]
\[ \Rightarrow y - \log \left| y + 1 \right| = \log \left| 1 + e^x \right| + C\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
xy dy = (y − 1) (x + 1) dx
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
(x + y) (dx − dy) = dx + dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
The solution of `dy/ dx` = 1 is ______
x2y dx – (x3 + y3) dy = 0
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve: ydx – xdy = x2ydx.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is