Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]
\[ \Rightarrow y\sqrt{1 - x^2} dy = - x\sqrt{1 - y^2} dx\]
\[ \Rightarrow \frac{y}{\sqrt{1 - y^2}}dy = - \frac{x}{\sqrt{1 - x^2}}dx\]
Integrating both sides, we get
\[\int\frac{y}{\sqrt{1 - y^2}}dy = - \int\frac{x}{\sqrt{1 - x^2}}dx\]
\[\text{ Substituting }1 - y^2 = t\text{ and }1 - x^2 = u,\text{ we get }\]
\[ - 2y dy = dt\text{ and }-2x dy = du\]
\[ \therefore \frac{- 1}{2}\int\frac{1}{\sqrt{t}}dt = \frac{1}{2}\int\frac{1}{\sqrt{u}}du\]
\[ \Rightarrow - t^\frac{1}{2} = u^\frac{1}{2} + K\]
\[ \Rightarrow \sqrt{1 - x^2} + \sqrt{1 - y^2} = - K\]
\[ \Rightarrow \sqrt{1 - x^2} + \sqrt{1 - y^2} = C ..........\left(\text{ where, }C = - K \right)\]
\[\text{ Hence, }\sqrt{1 - x^2} + \sqrt{1 - y^2} =\text{ C is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = cx + 2c2 is a solution of the differential equation
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
xy dy = (y − 1) (x + 1) dx
tan y dx + sec2 y tan x dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
y2 dx + (x2 − xy + y2) dy = 0
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve:
(x + y) dy = a2 dx
Solve
`dy/dx + 2/ x y = x^2`
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
The function y = ex is solution ______ of differential equation
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?