Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[2xy\frac{dy}{dx} = x^2 + y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2 x^2 v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + v^2}{2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{2v}\]
\[ \Rightarrow \frac{2v}{1 - v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{1 - v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \log \left| 1 - v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow - \log \left| \left( 1 - v^2 \right)x \right| = \log C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow - \log \left| \left( \frac{x^2 - y^2}{x^2} \right)x \right| = \log C\]
\[ \Rightarrow \left| \frac{x}{x^2 - y^2} \right| = C\]
\[ \Rightarrow \left| x \right| = C\left| \left( x^2 - y^2 \right) \right| \]
\[\text{ Hence, }\left| x \right| = C\left| \left( x^2 - y^2 \right) \right|\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = cx + 2c2 is a solution of the differential equation
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
(ey + 1) cos x dx + ey sin x dy = 0
xy dy = (y − 1) (x + 1) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
(x + 2y) dx − (2x − y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve the differential equation
`x + y dy/dx` = x2 + y2
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.