Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[ x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - 2 y^2 + xy}{x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - 2 v^2 x^2 + x^2 v}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 1 - 2 v^2 + v\]
\[ \Rightarrow x\frac{dv}{dx} = 1 - 2 v^2 \]
\[ \Rightarrow \frac{1}{1 - 2 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 - 2 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1^2 - \left( \sqrt{2}v \right)^2} = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2\sqrt{2}}\log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = 2\sqrt{2}\log \left| x \right| + 2\sqrt{2} \log C\]
\[ \Rightarrow \log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = \log \left| \left( Cx \right)^{2\sqrt{2}} \right|\]
\[ \Rightarrow \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} = \left( Cx \right)^{2\sqrt{2}} \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \frac{x + \sqrt{2}y}{x - \sqrt{2}y} = \left( Cx \right)^{2\sqrt{2}} \]
\[\text{ Hence, }\frac{x + \sqrt{2}y}{x - \sqrt{2}y} = \left( Cx \right)^{2\sqrt{2}}\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(x2 − y2) dx − 2xy dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
`dy/dx = log x`
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve the following differential equation y2dx + (xy + x2) dy = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.