Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
उत्तर
(x2 − y2 ) dx + 2xy dy = 0
∴ 2xy dy = (y2 - x2) dx
∴ `dy/dx = (y^2 - x^2)/(2xy) ......(i)`
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t +x dt/dx ...(iii)`
Substituting (ii) and (iii) in (i), we get
`t + x dt/dx = (t^2 x^2-x^2)/(2tx^2)`
∴ `x dt/dx = (t^2 - 1)/(2t )- t = (-(1+t^2))/(2t)`
∴ `2t/(1+t^2) dt = - dx/x`
Integrating on both sides, we get
`int 2t/(1+t^2) dt = - int dx/x`
∴ log |1 + t2| = -log |x| + log |c|
∴`log | 1+y^2/x^2| = log |c/x|`
∴ `(x^2 + y^2)/x^2 = c/x`
∴ x2 + y2 = cx
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The differential equation satisfied by ax2 + by2 = 1 is
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve:
(x + y) dy = a2 dx
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = ex is solution ______ of differential equation