Advertisements
Advertisements
प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
उत्तर
The equation of the family of hyperbolas having the centre at the origin and foci on the x-axis is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1............(1)\]
where \[a\text{ and }b\] are parameters.
As this equation contains two parameters, we shall get a second-order differential equation.
Differentiating equation (1) with respect to x, we get
\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} =0..........(2)\]
Differentiating equation (2) with respect to x, we get
\[\frac{2}{a^2} - \frac{2}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = 0\]
\[ \Rightarrow \frac{1}{a^2} = \frac{1}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]
\[ \Rightarrow \frac{b^2}{a^2} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] \left......( 3 \right)\]
Now, from equation (2), we get
\[\frac{2x}{a^2} = \frac{2y}{b^2}\frac{dy}{dx}\]
\[ \Rightarrow \frac{b^2}{a^2} = \frac{y}{x}\frac{dy}{dx} ........(4)\]
From (3) and (4), we get
\[\frac{y}{x}\frac{dy}{dx} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]
\[ \Rightarrow y\frac{dy}{dx} = xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} = 0\]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
(sin x + cos x) dy + (cos x − sin x) dx = 0
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
A population grows at the rate of 5% per year. How long does it take for the population to double?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
y dx – x dy + log x dx = 0
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is