मराठी

Form the Differential Equation Representing the Family of Ellipses Having Centre at the Origin and Foci on X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.

बेरीज

उत्तर

The equation of the family of ellipses having centre at the origin and foci on the x-axis is \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.........(1)\]
where a and b are the parameters.
As this equation contains two parameters, we shall get a second-order differential equation.
Differentiating (1) with respect to x, we get
\[\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0..........(2)\]

Differentiating (2) with respect to x, we get

\[\frac{2}{a^2} + \frac{2}{b^2}\left[ \left( \frac{dy}{dx} \right)^2 + y\frac{d^2 y}{d x^2} \right] = 0\]

\[ \Rightarrow \frac{2}{a^2} = - \frac{2}{b^2}\left[ \left( \frac{dy}{dx} \right)^2 + y\frac{d^2 y}{d x^2} \right]\]

\[ \Rightarrow \frac{b^2}{a^2} = - \left[ \left( \frac{dy}{dx} \right)^2 + y\left( \frac{d^2 y}{d x^2} \right) \right] .........(3)\]

Now, from (2), we get

\[\frac{x}{a^2} = - \frac{y}{b^2}\frac{dy}{dx}\]

\[ \Rightarrow \frac{b^2}{a^2} = - \frac{y}{x}\frac{dy}{dx} ..........(4)\]
From (3) and (4), we get

\[- \frac{y}{x}\frac{dy}{dx} = - \left[ \left( \frac{dy}{dx} \right)^2 + y\left( \frac{d^2 y}{d x^2} \right) \right]\]

\[ \Rightarrow \frac{y}{x}\frac{dy}{dx} = \left[ \left( \frac{dy}{dx} \right)^2 + y\left( \frac{d^2 y}{d x^2} \right) \right]\]

\[ \Rightarrow y\frac{dy}{dx} = x \left( \frac{dy}{dx} \right)^2 + xy\left( \frac{d^2 y}{d x^2} \right)\]

\[ \Rightarrow xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} = 0\]

It is the required differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.02 | Q 17 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


y2 dx + (x2 − xy + y2) dy = 0


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


The solution of `dy/ dx` = 1 is ______


y2 dx + (xy + x2)dy = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×