मराठी

For the Following Differential Equation Verify that the Accompanying Function is a Solution: Differential Equation Function X 3 D 2 Y D X 2 = 1 Y = a X + B + 1 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]
बेरीज

उत्तर

We have,

\[y = ax + b + \frac{1}{2x} . . . . . \left( 1 \right)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = a - \frac{1}{2 x^2} . . . . . \left( 2 \right)\]

Now differentiating both sides of (2) with respect to x, we get

\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( - \frac{1}{2} \right) \times \left( \frac{- 2}{x^3} \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{1}{x^3}\]

\[ \Rightarrow x^3 \frac{d^2 y}{d x^2} = 1\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 21.4 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

y ex/y dx = (xex/y + y) dy


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


y2 dx + (x2 − xy + y2) dy = 0


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


`xy dy/dx  = x^2 + 2y^2`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation xdx + 2ydy = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation

`y (dy)/(dx) + x` = 0


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×