Advertisements
Advertisements
प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
उत्तर
We have,
\[y = ax + b + \frac{1}{2x} . . . . . \left( 1 \right)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = a - \frac{1}{2 x^2} . . . . . \left( 2 \right)\]
Now differentiating both sides of (2) with respect to x, we get
\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( - \frac{1}{2} \right) \times \left( \frac{- 2}{x^3} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{1}{x^3}\]
\[ \Rightarrow x^3 \frac{d^2 y}{d x^2} = 1\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
xy (y + 1) dy = (x2 + 1) dx
y (1 + ex) dy = (y + 1) ex dx
y ex/y dx = (xex/y + y) dy
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
y2 dx + (x2 − xy + y2) dy = 0
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
`xy dy/dx = x^2 + 2y^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the differential equation xdx + 2ydy = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation
`x + y dy/dx` = x2 + y2