Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
dr + (2r)dθ= 8dθ
उत्तर
dr + (2r)dθ= 8dθ
`(dr)/(dθ)` + 2r = 8
The given equation is of the form
`(dr)/(dθ) + Pr = Q`
where, P = 2 and Q = 8
I.F. = `e ^(int^(P^dθ) = e^(int^(2^dθ) = e^(2θ)`
Solution of the given equation is
`r(I.F.) = int Q (I.F.) dθ + c`
`re^(2θ) = int 8 e^(2θ) dθ + c`
`re^(2θ) = 8 int e^(2θ) dθ + c`
`re ^(2θ) = 8e^(2θ)/2 + c`
`re ^(2θ) = 4e^(2θ) + c`
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]