मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation. (x+a)dydx=–y+a - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`(x + a) dy/dx = – y + a`

बेरीज

उत्तर

`(x + a) dy/dx = – y + a`

∴ `dy/dx + y/((x+a)) = a / ((x+a))`

The given equation is of the form

`dy/ dx + py = Q`

where, `P = 1/((x+a)) and Q = a/((x+a))`

∴ I.F. = `e ^(int^(pdx) = e ^(int^(1/(x+a))^dx)`

= `e^(log^ |x+a|) = (x+a)` 

∴ Solution of the given equation is

`y ( I.F.) = int Q (I.F.) dx + c `

∴ `y(x + a) = int a/((x+a)) (x+a) dx + c`

∴ `y(x + a) = a int 1  dx + c`

∴ y (x + a) = ax + c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.5 [पृष्ठ १६८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.5 | Q 1.7 | पृष्ठ १६८

संबंधित प्रश्‍न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


C' (x) = 2 + 0.15 x ; C(0) = 100


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


dy + (x + 1) (y + 1) dx = 0


Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

y ex/y dx = (xex/y + y) dy


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


The function y = ex is solution  ______ of differential equation


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×