मराठी

Show that the Differential Equation of Which Y = 2 ( X 2 − 1 ) + C E − X 2 is a Solution is D Y D X + 2 X Y = 4 X 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]

बेरीज

उत्तर

We have,
\[y = 2\left( x^2 - 1 \right) + c e^{- x^2}...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = 4x - c e^{- x^2} 2x\]
\[ = 2x\left[ 2 - c e^{- x^2} \right]\]
\[ = - 2x\left[ 2 x^2 - 2 + c e^{- x^2} - 2 x^2 \right]\]
\[ = - 2x\left[ 2\left( x^2 - 1 \right) + c e^{- x^2} - 2 x^2 \right]\]
\[ = - 2x\left[ y - 2 x^2 \right] .............\left[\text{Using }\left( 1 \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = - 2xy + 4 x^3 \]
\[ \Rightarrow \frac{dy}{dx} + 2xy = 4 x^3\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 19 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \sin^2 y\]

xy dy = (y − 1) (x + 1) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(1 − x2) dy + xy dx = xy2 dx


dy + (x + 1) (y + 1) dx = 0


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


x2 dy + y (x + y) dx = 0


y ex/y dx = (xex/y + y) dy


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Define a differential equation.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation satisfied by ax2 + by2 = 1 is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the differential equation:

dr = a r dθ − θ dr


y2 dx + (xy + x2)dy = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×