Advertisements
Advertisements
प्रश्न
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
उत्तर
We have,
\[y = 2\left( x^2 - 1 \right) + c e^{- x^2}...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = 4x - c e^{- x^2} 2x\]
\[ = 2x\left[ 2 - c e^{- x^2} \right]\]
\[ = - 2x\left[ 2 x^2 - 2 + c e^{- x^2} - 2 x^2 \right]\]
\[ = - 2x\left[ 2\left( x^2 - 1 \right) + c e^{- x^2} - 2 x^2 \right]\]
\[ = - 2x\left[ y - 2 x^2 \right] .............\left[\text{Using }\left( 1 \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = - 2xy + 4 x^3 \]
\[ \Rightarrow \frac{dy}{dx} + 2xy = 4 x^3\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
xy dy = (y − 1) (x + 1) dx
(1 − x2) dy + xy dx = xy2 dx
dy + (x + 1) (y + 1) dx = 0
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
x2 dy + y (x + y) dx = 0
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Define a differential equation.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The differential equation satisfied by ax2 + by2 = 1 is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the differential equation:
dr = a r dθ − θ dr
y2 dx + (xy + x2)dy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: